Drug discovery and development and how I ended up working in Pharma

Chad Elmore, PhD
AstraZeneca Pharmaceuticals
Outline

- Astrazeneca
- Drug Discovery and Development
- A bit about me
- My role at AstraZeneca
AstraZeneca

• One of the World’s Largest Pharmaceutical Companies, formed through merger in 1999

• >10,000 staff in Research and Development (60,000 total)

• Major research locations in UK, Sweden and USA

• Annual R&D Expenditure ~$5 billion
Global R&D Sites

- Gaithersburg, MD
- Boston, MA
- Cambridge, UK
- Macclesfield, UK
- Göteborg, Sweden
Some established drugs and key current research areas:

- **Tagrisso**: metastatic non-small cell lung cancer
- **Brilinta**: cardiovascular
- **Faslodex**: breast CANCER treatment
- **Symbicort**: asthma RESPIRATORY
Outline

- Astrazeneca
 - Drug Discovery and Development
 - A bit about me
 - My role at AstraZeneca
From discovery to patients...

Including the cost of failure this can cost $5 billion/drug

>80% of drugs tested in people don’t make it
Phases of work – target selection

academia

Internal Work

Competitors

$$$
Phases of work – target selection

<table>
<thead>
<tr>
<th>Target Selection (TS)</th>
<th>Before screening can start, the project needs to develop the science and technology for the screening approach. Key reagents produced and assays are developed.</th>
</tr>
</thead>
</table>

- **Target selection**
- **Hit ID**
- **Lead ID**
- **Lead Optim**
- **Preclinic Develop**
- **Phase I**
- **Phase IIa**
- **Phase IIb**
- **Phase III**
- **Product Maint**
Phases of work – Hit ID

Hit Identification

High Throughput Screening assay development, screening and Active-to-hit evaluation.
Phases of work – Hit ID

Automation is the name of the game!!!
Phases of work – Lead generation

- Lead generation: The process of identifying a series of compounds that have the potential to be developed into drugs.

Diagram:
- Target selection
- Hit ID
- Lead ID
- Lead Optim
- Preclinical Develop
- Phase I
- Phase Ia
- Phase Iib
- Phase II
- Phase III
- Product Maint
Lead Identification – Finding a drug

- High Throughput Screening
- Rational Drug Design
- Improving Known Drugs

Structure activity relationship → Hit to Lead Processes → Lead Compound
Phases of work – Lead Optimization

Lead Optimization: The process of identifying a series of compounds that have the potential to be developed into drugs.
Medicinal Chemists and Lead Optimization

Physical properties
pKa, H-bonding, solubility, lipophilicity

Biological properties
in vitro affinity & efficacy
selectivity & toxicity
in vivo models

Computational chemistry
3-D molecular properties
receptor & enzyme models
QSAR, cheminformatics

Metabolism & Pharmacokinetics
clearance, metabolism, oral bioavailability, duration

Lead generation
targeted libraries ‘lead-like’ & ‘drug-like’ molecules

Synthesis

Structure Activity Relationship

Which compounds to make next?
Phases of work – Lead Optimization

Drug Core

Biological properties
-- potency
-- selectivity
-- side effects
-- low dose

Metabolism
-- once a day dosing
-- safety
Phases of work – Lead Optimization

Drug Core

Biological properties
-- potency
-- selectivity
-- side effects
-- low dose

Metabolism
-- once a day dosing
-- safety
Phases of work – Lead Optimization

Drug Core

- Biological properties
 - potency
 - selectivity
 - side effects
 - low dose

- Metabolism
 - once a day dosing
 - safety
Lead Optimisation – Making a drug better

- Lead Optimization… taking our lead series and delivering a candidate drug, which needs to be……

- Potent
 - active at receptor at concentrations < 1×10^{-8} M so it can be administered in a reasonably sized tablet!

- Selective
 - no unwanted pharmacological activities, side effects

- Bioavailable – ideally a tablet taken once or twice daily
 - must be absorbed, retained and stable to metabolism in the body
Lead Optimization – Finding a drug
Phases of work – Preclinical development

Preclinical development

PK/PD/pivotal toxicology to support Phase 1 completed as appropriate. Efficacy demonstrated in vitro and in vivo as appropriate, IP filed and preparation for first time in human (FTIH) progressing.
Preclinical work

• To understand pharmacokinetics of the drug
 – ADME - Absorption, Distribution, Metabolism, Excretion
 – (what the body does to the drug)

• To test the impact a drug has on an enzyme / receptor / biomarker in vivo

• To test the efficacy of a drug in a disease model
 – In oncology, typically a tumour xenograft

• To test different treatment regimens in a disease model
 – Combinations of drugs, dosing schedules etc.

• To understand the safety and toxicities of the drug
Phases of work – Phase I

Phase 1 Small studies, normally conducted in healthy subjects, aiming to establish PK, tolerability and potentially evidence of clinical target engagement.
Phases of work – Phase 2

Phase 2a
Trials with efficacy as primary endpoints to reach Proof of Principle (PoP). PoP shows that the candidate drug results in a biological and/or clinical change associated with the disease and mechanism of action.

Phase 2b
Randomised controlled trials, dose-range finding studies to select the dose(s) for Phase 3, producing a data package to support Proof of Concept (PoC)...PoC indicates that the treatment with the candidate drug results in a clinical change on an accepted endpoint or surrogate in patients with the disease plus evidence of a high degree of confidence of success in Phase 3.
Phases of work – Phase 3

Confirmatory study with registrational intent
Large expensive studies in large patient population
Phases of work – Product Maintenance

Product Maintenance

maximise the product value throughout the product life-cycle.
Phases of work – Product Maintenance

Environmental Fate

New Indications

Comparison vs. Other therapies
Outline

- Astrazeneca
- Drug Discovery and Development
- A bit about me
- My role at AstraZeneca
My pathway to a career in the Pharmaceutical industry

High school in Louisiana (1987) – Thibodaux and Natchitoches
 Investigated the pH dependence of lakes on the types of trees surrounding them.

BS in Chemistry (1991) – Rose-Hulman Institute of Technology in Terre Haute, IN
 Conducted research on the ene reaction.

PhD in Organic Chemistry (1997) – U of Illinois – Urbana, Champaign
 Investigated the mechanism that enzymes use to produce natural products.

Interviewing…

>200 jobs applications (mailed) over 1.5 years. Two hits at end: a contract lab and Merck.

1997 – 2004 (NJ)

2004 – 2011 (DE)
2011 – present (Sweden)
Outline

• Astrazeneca
• Drug Discovery and Development
• A bit about me
• My role at AstraZeneca

 • I manage a team that incorporates radioactivity into drug molecules.
What is Radioactivity?

• Every element has a unique number of protons
 Carbon has 6, oxygen has 8, Uranium has 92

• The number of neutrons can vary creating isotopes

• An isotope has the same number of protons but different number of neutrons
 • Carbon-14 (8 neutrons, 6 protons)
 • Tritium (H-3, 2 neutrons, 1 proton)
 • Deuterium (H-2, 1 neutron, 1 proton) – not radioactive

 > 1500 isotopes are known to exist.

• 280 isotopes are stable, >1250 unstable (radioactive).
What is Radioactivity?

Number of neutrons

Band of stability

1:1 proton: neutron

> lead

Atomic number Z, protons
What is Radioactivity?

- Radioactive decay can take place by:
 - β^- emission -- neutron excess
 - Neutron to proton and β^-
 - β^+ emission -- proton excess
 - Proton to neutron and β^+
 - Electron capture
 - $14^6\text{C} \rightarrow 14^7\text{N} + ^0\beta^- + \nu$
 - Fission -- Large nuclides
 - $236^{\text{U}} \rightarrow 90^{\text{Sr}} + ^{141}_{54}\text{Xe} + 3\text{n}$
 - Alpha particle
 - $241^{\text{Am}} \rightarrow 237^{\text{Np}} + ^4\text{He}$
How is radioactivity useful?

- HPLC (High-Pressure Liquid Chromatography)
- UPLC (Ultra Performance Liquid Chromatography)
- SFC (Supercritical fluid chromatography)

Separates by polarity
Detects by UV (and others Including Radioactivity)
UTILITY OF RADIOACTIVITY
ULTRAVIOLET VS RADIOMETRIC

More polar

less polar

Abs @ 210 nm

Radioactivity

Time, min

Polar Metabolites

Drug X

Non-polar Metabolites
Tritium Manifold
Tritium Gas Reaction
Basic Research
Development of a PET (positron emission tomography) ligand for the CCR2 receptor

Markus Artlesmair

Many compounds

[18F]FDG whole body image.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675417
PET radioligand for imaging brain 5-HT$_{1B}$ receptors

Anton Lindberg

Sangram Nag, Magnus Schou, Akihiro Takano, Junya Matsumoto, Nahid Amini, Lars Farde, Victor W. Pike, Christer Halldin
Light Catalyzed Aminocarbonylation of Alkyl Iodides

Malvika Sardana

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675071
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska–Curie grant agreement No 675071 and 675417.
[11C]AZ10419096 – a full antagonist PET radioligand for imaging brain 5-HT\textsubscript{1B} receptors

Anton Lindberg a,*, Sangram Nag a, Magnus Schou a,b, Akihiro Takano a, Junya Matsumoto a, Nahid Amini a, Charles S. Elmore c, Lars Farde a,b, Victor W. Pike d, Christner Halldin a

a Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden

b AstraZeneca, Personalised Healthcare and Biomarkers, AstraZeneca PET Science Centre, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

c Isotope chemistry, Early Chemical Development, Pharmaceutical Sciences Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden

d Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
The Labs
Isolated area for preparation of samples for humans
Acknowledgements

Peter
Mark
Åsa
Anders
Cecilia
Jonas
Malvika
Markus
Lee
Ryan
and Roger Simonsson, Gunnar Stenhagen, Yong Zhang, Andy Zhang, Dennis Dean, Dick Heys, Dermot McGinnity, and many others
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No 675071 and 675417.